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ABSTRACT 

The renormalization group equations describing the evolution of fermion 

Higgs-Yukawa coupling constants down from Mx in a Grand Unified Theory possess 

fixed points which may lead to universal predictions for fermion masses 

independent of symmetry considerations at Mx. Our analysis predicts z 240 GeV 

for the fixed point t-quark mass. Alternatively, a sufficiently heavy fourth SW) 

generation cannot be ruled out by existing bounds on nf and we find fixed point 

mass predictions of mT = 219 GeV, mB ” 215 GeV and mE ” 60 GeV. 
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I. INTRODUCTION 

One of the great problems of particle physics is to understand the origin and 

to calculate the values of the elementary fermion, i.e. quark and lepton, masses 

observed in the laboratory. There have been many proposals for dealing with this 

question involving, typically, the imposition of some kind of discrete symmetry or, 

perhaps equivalently, to view it as a consequence of constraints arising in grand 

unified theories at very short distances.’ Indeed, one of the triumphs of SU(5) is 

the successful prediction of mb/m ‘I in the “minimally Higgsified” scheme. Here the 

short distance relationship mb = mr is renormafized by evolving the Higgs-Yukawa 

coupling constants gb and g, down from Mx (= 10 f5 GeV) to the light fermion mass 

scales (= few GeV) where the principle effect is the increase in mb due to QCD- 

gluonic radiative corrections.’ As strong a vote of confidence for SU(5) as this 
-. 

result may be, we do not know what sets the scale of mb (= mr), or equivalently gb 

(= g,), at Mx. Hence, a completely satisfactory theory of fermion masses and the 

related problem of mixing angles is certainly lacking at present. 

A novel idea has recently occurred to Pendleton and Ross which is not 

unrelated to the mb/mr relation in SU(5). In an interesting letter’ they have 

suggested that the top quark, or possibly other heavy quarks, may have masses 

determined solely by the low energy structure of the renormalization group 

equations describing the evolution down from Mx to mt (= M,, the “terrestial” 

mass scale of SU(2) x U(1) electroweak symmetry breaking). Here the top quark 

mass is determined by an infra-red stable “quasi”-fixed point of the RG equations 

and one, in principle, obtains a universal result for the physical m 
top 

over a large 

range of initial g top Higgs-Yukawa couplings at M,. We refer to this behavior as a 

“quasi”-fixed point because, as Pendleton and Ross show, g, is swept toward a value 

of m .gQCD( k12) and continues to track the strong coupling constant for 



3 FERMILAB-Pub-80/97-THY 

2 sufficiently small final mass scales, u . Hence, Pendleton and Ross predict upon 

including additional SU(2)x U(I) corrections that the top quark will weigh in at 

about 135 GeV, if it is already in the domain of this fixed point behavior at that 

energy scale. 

This possibility is quite intriguing because it illustrates that the details of the 

precise symmetry conditions determining particle masses (or their Higgs-Yukawa 

couplings) at a primordial mass scale can be completely obliterated by the renor- 

malization group and replaced by the fixed point structure of the RG equations 

themselves. Furthermore, if such a mechanism is operant, we may in principle 

already possess an understanding of the relevant RG equations but have no inkling 

as to the underlying symmetry conditions at M primordial’ having nonetheless a 

prediction for the fermion masses. We shall see, furthermore, that the effect that 

increases m b relative to m ‘I in SU(5) is precisely the strong interaction renor- 

malization which principally gives the Pendleton-Ross fixed point behavior for 

gtop. Hence, the successful mb/m, relationship may also be a strong vote of 

confidence for the existence of a real fixed point behavior for a much heavier 

fermion such as the top quark. 

The Pendleton-Ross fixed point represents the exact mathematical fixed 

point structure of the renormalization group equations for gtop and gQCD. This is 

2 an attractive fixed point in the sense that as one proceeds toward decreasing u , 

one should be pulled toward the fixed point for arbitrary initial g top(Mx). In fact, 

one finds that this fixed point is never significantly approached for final u2 as large 

as = M W 2 and is not reached until u2 << I GeV2 whence g& begins to vary 

dramatically. The authors of ref. (3) note that numerically their exact fixed point 

corresponds to $135 GeV for m top (including el ectroweak corrections) whereas the 

solution to the renormalization group equations actually allows m 
top 

in the range 

of 110 to 220 GeV. 
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Nevertheless, we show that there is yet another “intermediate fixed point” 

behavior of the solution to the RG equations that is relevant at u2 z mt2. Whereas 

the Pendleton-Ross fixed point behavior is obtained by studying simultaneously the 

RG equations for gt2 and g&D, our result is obtained by treating g&D as “slowly 

varying” and replacing it by a constant, $&D, in the RG equations for gt2 by itself. 

To a good approximation &D is just the average of g&D(p) over the range 

mt2, uz < M - x 2 (though we give an optimization of i valid also in the cases studied 

in Section III involving multiple heavy quarks). In this manner we obtain a precise 

prediction for mt larger than that of ref. (3). Indeed, we obtain mt DI 240 GeV 

including the full electroweak corrections using the values of 

<ip” >= v/G= 175 GeV of ref. (3, 10). This result is valid to one loop and we 

expect possible significant corrections in- two loops principally from QCD. This 

result is also consistent with an upper bound quoted by the authors of ref. (3) of 

mt = 220 GeV keeping only QCD effects in discussing the rate of approach to their 

fixed point. We will show however that this mass value is the actual relevant fixed 

point obtained from the RG equation for g, at these mass scales. The prediction 

emerges from the simple assumption of an SU(2) x U(1) x SU(3) desert beyond the 

top quark for mt 2 u < M,. 

To illustrate the existence of the intermediate fixed point behavior the result 

for gt (100 GeV) is plotted against g, (Mx fl 10 l5 GeV) in Fig. (l), keeping only QCD 

effects (m, is given by mt n gt(lOO GeV) x v/r’%. The intermediate fixed point is 

the asymptotically constant behavior of this curve at gt(lOOl - 1.27 whereas the 

Pendleton-Ross fixed point is indicated by the dashed line. The PR fixed point is 

clearly not controlling the actual asymptotic behavior. Also, we note presently 

that the asymptotic value of this function provides an absolute upper bound for the 

mass of any +2/3 charged quark to one loop order, keeping only the effects of QCD. 

We improve the result quantitatively in Section II. We also indicate in Fig. (1) a 

crude estimate of the intermediate fixed point behavior by using for i&CD the 
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average of g&D with respect to t = In u over the range 1002 u’ 1Oi5 GeV. This 

result is seen to be much closer and, in fact, we show in Section II how to compute 

the exact asymptote from the intermediate fixed point analysis. 

Such large masses for the t-quark may seem to be unrealistic; X2 it may well 

be that g, @lx) is not initially large enough to be swept toward the intermediate 

fixed point, even though it is likely to suffer a large upward renormalization 

through the effects of QCD in evolving down from Mx. In that case our discussion 

of single heavy fermion RG fixed points is irrelevant, but the possibility remains 

that there exists a fourth generation of heavy quarks and leptons for which RG 

fixed point behavior becomes extremely likely. Indeed, the usual bound on nf may 

accommodate at least one more,4 whereas the strict limit nf 2 6 of Nanopoulos and 

ROSS,~ in examining two loop effects, may become invalid if there are heavy quarks 

and Ieptons whose Higgs-Yukawa couplings are comparable to gQCD. Therefore, in 

Section III we analyze the case of a single heavy quark pair and a complete SU(5) 

heavy fermion generation with arbitrary gU and gD = gE at Mx. We make the 

simplifying assumption of no Cabibbo mixing with the other generations and ignore 

heavy neutrino contributions. We obtain scatter plots which represent the 

probability of finding fermions in given mass ranges assuming only the existence of 

the desert. Most of our points are seen to cluster about an intermediate fixed point 

and, in the case of a single heavy SU(5) generation, we obtain the most probable 

values for the masses: 

mU ‘- 219 GeV mD - 215GeV mE - 60 GeV . 

Again, we find that the fixed point behavior of physical interest is roughly 

determined by the average values of the QCD and electroweak coupling constants 

over the region of integration. 
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Finally, in Section IV we review various constraints and examine other conse- 

quences of our mechanism. For example, to what extent is the mb/mt relationship 

affected by the existence of heavy fermions which have Higgs-Yukawa couplings of 

order g QCD? Our essential conclusion is consistent with that of Pendleton and 

Ross, even in the case of many heavy fermions, that one cannot rule this possibility 

out. Hence, one might reasonably expect to find massive quarks in the m :: 200 to 
4 

250 GeV range and leptons in the neighborhood of = 60 GeV. 

We mention that these discussions are related to earlier works placing bounds 

upon the numbers and masses of quarks and leptons as in ,Maiani et al.6 We believe 

that the fixed points are more than mere bounds as they are the most probable 

places that the masses will accumulate at u ’ given an approximately flat 

probability distribution at fvl,*. Also, there has been an effort to understand the 

hierarchies of mixing angles and fermion masses in terms of the renormalization 

group a la Frogatt and Nielson.’ The conclusions of ref. (7) are essentially realized 

in ref. (3) and the present work in that, in the absence of discrete symmetries one 

finds two hierarchies consisting of “light” fermions, (u,d,c,s,b), whose Higgs- 

Yukawa couplings are not sufficiently large to be within the domain of attraction 

of the non-trivial fixed point and “heavy” fermions including perhaps the t-quark 

and conceivably successive generations which are strongly influenced by the fixed 

points. As in ref. (3) and ref. (7), we have no comment on the distribution of light 

quark masses, which are sensitive to the primordial symmetry relationships. 

Also, recently Veltman has considered the problem of quadratic divergences 

and the necessity of imposing cancellations of these in any realistic dynamical 

symmetry breaking, i.e. composite Higgs boson, schemes.g These considerations 

lead to similar heavy mass predictions and may be related to the present work and 

ref. (3) in which fixed points essentially imply the cancellation of logarithmic 
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divergences. Finally, Ross and Pendleton are extending their analysis to other 

problems.9 

Presently we shall consider the case of a single heavy t-quark neglecting 

Higgs-Yukawa corrections of known fermions and various corrections beyond one- 

loop. 

II. CASE FOR A HEAVY TOP QUARK 

We assume presently that there are no heavy fermions beyond the t-quark, 

with the possible exception of super-heavies which have masses of order Mx and 

have thus decoupled for momentum scales u << Mx. The Yukawa coupling constant 

of the top quark to a single doublet of Higgs bosons determines the mass of the top 

quark through the equation (we follow the conventions of Sakurai”): 

mt = n t vg i 2 
- Amt , - Amt , , 2O I (2.1) 

where gt is evaluated at zero momentum transfer to the Higgs boson and v/flis 

the Higgs vacuum expectation value. v is determined by the W-boson mass and the 

SU(2) coupling constant g: 

Mq = gv,@ ; v :: 245 GeV (2.2) 

with Mw 2 
= 78 GeV, and sin 0,~ z .23. X in eq. (2.1) is a “threshold factor” of order 

unity. 
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The running Higgs-Yukawa coupling constant, g(- p2) 5 g(- p2, - o*, - u2), 

satisfies the renormalization group equation to order one loop 11 : 

2 dgt ~ 16n dt 9 = g, 2g, { 
2 _ agc2 _ I+) 

) 
(2.3) 

where t = In u and we’ve neglected the contributions of the lighter quarks and 

leptons, and 

K$) = ; g*(t) + g gt2w (2.4) 

Here gc, g and g’ are, respectively, the coupling constants of SU(3), W(2), and U(1). 

The running of g, described by eq. 12.3) is appropriate to the coupling 

constant evaluated at a symmetrical point in momentum space and we must 

consider the extrapolation from the case of zero momentum transfer in eq. (2.1) 

which determines the fermion mass. f2 This is analogous to the extrapolation of 

oEb, from the Thomson limit of Compton scattering (=1/137) to -q2 =X Mw2 

(” l/128). The extrapolation involves the diagrams of Fig. (2b), which are of order 

2 Ktgt, and those of Fig. (2~) which are of order gtgk wrth gR a light fermion 

Yukawa coupling. The latter contributions are by themselves gauge invariant, but 

we are tacitly ignoring terms of order g9. 2 m eq. (2.3) and will thus ignore these. 

The corrections of order Ktgt are in principle a problem and constitute a gauge 

dependence in the Higgs vacuum polarization and in the extrapolation. However, 

we expect these effects to contribute only in the range XMw2< p2 -c Xm 2 
t and in 

practice this is not a significant contribution. Also, there are no extrapolation 

effects for u2 < X mt2 of order gt3. Hence, we have to a very good approximation: 
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g,(- p2, - u2, 0) :: g,(- P’, - v2, - IJ~) 
I 

(2.5) 

u2L mt2 

The running of g, described by eq. (2.3) will terminate by decoupling for 

2 
IJ 2Amt 2 = xgt* * v /2, and the quantity of interest to us is therefore: 

mt = $gt - Amt2, gt(Mx2) 
i 

(2.6) 

For our present discussion we will simply replace Xmt2 by :: (loo)* GeV2 in 

evaluating mt and later we will consider the solution of this implicit equation by 

Newton’s method, which leads to a correction of order a few percent. X is here 

associated principally with the t + t + gluon threshold and is approximately unity. 

Henceforth we assume X = 1. 

Pendleton and Ross discovered a “quasi”-fixed point behavior by combining 

eq. (2.3) with the RG equation satisfied by the QCD strong-interaction coupling 

constant: 

,6*2 dg, = -bogc3 2 
dt ; b. = ll-3nf (2.7) 

Upon forming the difference between eq. (2.3) and eq. (2.7) and presently ignoring 

K t, one obtains: 

16~~ ${ In (gt/gc)j = 4 gt2 - c8 - bo)gc2 (2.8) 
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Therefore, if the rhs of eq. (2.8) vanishes, then gt and gc are in a fixed ratio which 

remains constant for all subsequent t. Furthermore, as t tends toward zero (we will 

generally consider t to be decreasing from In Mx to In mt) any arbitrary gt is 

attracted toward this fixed ratio: 

gt 
2 = $ (8 - bo)gc2 (2.9) 

and subsequently g, “tracks” along with gc for decreasing t (we study the stability 

of fixed points in Section III). If such a behavior has set in for t 2 In mt, then we 

will have an unambiguous prediction for mt by eq. (2.9). For 6 quarks, b. = 7 and 

taking a value of cis = gc2/4n = l/7 at 100 GeV = p yields mt 2: 110 TeV which is 

the Pendleton-Ross prediction for mt in the absence of electroweak (~~1 

corrections (these increase m, to = 135 GeV). 

The exact solution of eq. (2.31, neglecting K~, is: 

P,zh2) = gti(M;)( $:f(;2),“‘bo{ I+$;$ ( (r::~~~2),1’b~~l) 1-l .@.] 

One sees in eq. (2.10) that in the limit: 

1 /b. 
>> 1 (2.11) 

we reach the PR fixed point behavior: 
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T/b0 
gc2!Mx2) (2.12) 

, 

which is a fixed point in the sense that all information about the boundary 

condition, gt(hlx2), has dropped out. Remarkably, the case nf = 6 is quite special 

since with b. = 7 all information about Mx2 also drops out, and we obtain 

gt2(p2) = ; gc2( u2) (2.13) 

Note that eq. (2.12) is also equivalent to eq. (2.9) plus small logarithmic 

corrections. 

Our principle concern, however, is whether one is justified in assuming that 

the PR fixed point behavior has set in by- the time one reaches mass scales of order 

Amt in evolving down from t = In Mx. Of course, we have the exact solution of eq. 

(2.3) in eq. (2.101, but in the more complicated case of several heavy fermions as 

discussed in Section III this will not be available to us and an understanding of the 

relevant mechanisms becomes essential. In fact a closer examination of the 

solution eq. (2.10) reveals that the PR fixed point does not set in until u < 1 GeV. 

First, let us examine the solution’s properties graphically, In Fig. (3) we’ve 

plotted the exact solution of eq. (2.10) for g,(u*) as a function of gt(M,*) for three 

2 sample values of u . The details of our choice of a specific g,‘(t) may be found 

toward the latter part of this section. We’ve also indicated the point on each curve 

at which eq. (2.13) is satisfied. We see that the approach to the PR fixed point is 

quite slow and does not seem to be reflected in the location of the constant 

asymptote until u < 1 CeV. Nevertheless, the curves possess a constant asymptotic 

behavior as gt(Mx2) gets large for each choice of I,J 2 (of course, we require that 
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(gt2(Mx21)/(16n2) << I lest eq. (2.3) be disfigured by higher order corrections). This 

asymptotic constant behavior literally implies the existence of some kind of fixed 

point behavior since gt(u’) is independent of gt(Mx2) as the latter becomes 

sufficiently large. What accounts for this behavior which is evidently independent 

of the Pendleton-Ross fixed points? 

First we will give a schematic description. Consider eq. (2.3) by itself 

without forming the combined equation (2.8). Over the domain of integration 

where u varies from between - 10 I5 to = IO* we may consider the behavior of s 

to be “relatively constant,” varying from : l/50 to z l/7. If we begin with gt(lO”) 

sufficiently large, much of the initial evolution of g,(u) is given solely by the first 

term on the rhs of eq. (2.3). Indeed, if 9/2 g,‘(u*) >> 8gc2(p2) we may ignore the 

effects of QCD altogether and write: 

2 din 1677 gt 9 2 2 2 
7 =?gt 

92 
M I<U -<Mx (2.14) 

As p decreases from the intermediate mass scale M’, g, will decrease by eq. (2.14) 

until it “feels” the effects of the second term on the rhs of (2.3) at some scale for 

which g,(u) > gc(Mx). Here the two terms will compete in a region in which 

V/2 gt2 = 8gc2, and we thus have: 

din gt 
1671~ dt = ; gt2 - 8gc2 : 0 M”2 2 -< p I< hY2 . (2. 15) 

In this intermediate region g, must remain relatively constant. Finally, the rapidly 

increasing gc2 overtakes the leading term on the rhs and we eventually reach the 

“tracking” behavior of the PR fixed point in which the ratio of gt/gc becomes 

constant: 
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1611 
2 din k,/g,) 

dt = ;gt2 - (8 - bo)gc2 = 0 , y2 << & , (2.16) 

In fact, it is precisely the condition of eq. (2.15) which gives rise to the 

asymptotic behavior of the curves in Fig. (3) 

9 2 
z gt 

= 8gc2 MT!2 2 
I<u -<M 

82 (2.17) 

where ic2 IS a typical value of gc2(p ‘) in the intermediate range. As a preliminary 

-2. estimate for the appropriate value of gc m eq. (2.17) let us simply take the 

average of gc2(t) over the range to = In u to tf = In 1015. In fact, we a priori 

-2 expect this to slightly underestimate the correct gc smce we are making no 

provision to cut off our averaging at In M’ and we include a tail from In &I’ to In Mx 

in which gc2(t) is at its smallest values. Taking p = IO2 for example, we find 

g 2, 
C 

.66 whence we expect the asymptote for this curve at g, 2 4/3 9, = 1.08. 

We’ve plotted these points on each curve and indeed we see they are, to a good 

approximation, a description of the correct asymptotic behavior, including the 

slight underestimate as expected. Even in the case when the PR fixed point is 

becoming a better approximation at u= I C&V, our crude result is still quite good. 

Hence, our graphical analysis suggests it is not the condition of eq. (2.16) 

which determines the fixed point behavior of the physical Higgs-Yukawa coupling 

at the relevant u L values, but rather the condition of eq. (2.17) for the appropriate 

choice of EC2 wrt t, which is roughly the average of gc2 over the entire range of 

integration. However, we can easily give a more rigorous meaning to ic2. 

An examination of the solution eq. (2.10) reveals that the condition of eq. 

(2.11) is stronger than one requires to be at a fixed point. Indeed, it is sufficient 

that 
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; d3& (( g;2) )“-“- ‘i >> I (2.18) 

which can occur before (gc2(p2)/gc2(M,2)) 
I/b 

’ is much larger than unity for 

sufficiently small gc2(Mx2) and large gt2(Mx2). Let us define 

R = gc2( &/gc-lMx2). Then we may consider l/b0 In R to be a small quantity and 

expand eq. (2.10) assuming also eq. (2.18): 

+... 
t 

I + &- In R +& (&ln R)’ + . . . 

I +=&InR+&(lnR)2+... (2.20) 
0 

- Hence, a more rigorous definition of g, 2 in the integration domain of eq. (2.17) is 

given by 

(2.21) 

and the actual asymptotic behavior of g,(u) vs. gt(M,) is 

g,(u) = R = 
gc2b 2) 

gc2(Mx2) * 
(2.22) 

Though eq. (2.22) bears little resemblance to the average value of g,‘(t) wrt t over 

the domain u2 to M ’ x , it IS q:iite close tc this value in practice. 

2, In Fig. (41 we show the evolution of e,(;l , against 1-1 2 for several initial 

choices of gt(?,,Ix2). ‘i?e include also tkie function of eq. (2.22) and we plot the 

TJendleton-Ross fixed point behavior, eq. (i.I3), all vVSith b. = 7. ::!e see that for 
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gt(Mx2) = l/3, we are dlmost in the PR fixed ratio initially and we follow their 

curve quite closely. In general, the relevant behavior is illustrated by the curves 

with larger gt(fvlx2) > 1. These are seen to approach the intermediate fixed point 

behavior near In (102) reasonably well. We’ve also plotted the t-quark threshold 

condition here, i.e. when 

t = $-In (Xgt2 {) 

(2.23) 

Hence, the running behavior described by eq. (2.8) is only relevant to the right of 

this latter curve and the portions to the left are unphysical. We see that all curves 

eventually merge with the PR fixed point for very small t, but that this is to the 

left of our threshold conditions. We conclude that the only possible relevant fixed 

point behavior here is our “intermediate” fixed point as described above. 

As a point of interest we note that the intermediate fixed point may be of 

slight mathematical interest. - The value of gc 2 given in eq. (2.21) depends only 

upon its own “rate of evolution” given by b. and its coefficient in the differential 

equation (as well as its soft dependence upon Mx2 and, of course, u2). Hence, for a 

general problem of the form 

2 = 1 aijyi3 - 8YiX2 , g = -yx3 

1 
(2.24) 
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we will have intermediate fixed point behavior and may substitute for x in the first 

equation the constant 

x=x c 
x(t,) / 

6 In (x(t,)/x(t. ‘4 
(2.25) 

independent of the valties of the coefficients CL... 
‘I 

This turns out to be relevant to 

the cases of many quarks and leptons analyzed in Section III. Here, the same value 

-2 
of g, given in eq. (2.21) (with the appropriate bo) determines the fixed point 

behavior for any number of quarks. 

We now turn to a more quantitative discussion including the effects of the 

SU(2)x U(1) electroweak interactions by the inclusion of ct into eq. (2.3). In the 

general case of an arbitrary single heavy quark or lepton we have the RG equation: 

2 dgf 
1677 dt q gf - Bgc2 - Cg2 - Dgp2 (2.26) 

the solution of which is: 

9,2(t) 1 g:Cto’( -?& To3( g To2 (g,-Tol 

(2 

where 
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b 22 2 03 = II-$nf , bo2 q 3 -?;nf , bol = 2 -7nf 

and 

t 
0 

= lnMx , t =In u (2.28) 

In the case of the t-quark, A = 9/2, B = 8, C = 9/4 and D = 17/12. The integral 

apppearing in eq. (2.27) must be performed numerically in general. Hence, we 

require the exact form of gc(t), g(t) and g’(t) before proceeding. 

The appropriate choice of g c2 amounts to the correct choice of b. and II. We 

have the usual one loop QCD coupling constant with b. = 7 for nf = 6 in the form: 

2 
gc .2n 

as = x = f(t-ln t = lnp (2.29) 

The value of II requires brief comment. 

For nf = 4 and p2 below the b-quark threshold, we may choose a conventional 

value of A from electroproduction fits of the order 300 MeV < A < 500 MeV. As we 

extrapolate to higher u2 and excite various quark flavors we must include the 

modifications in b o. One possibility is to use the Georgi-Politzer mass dependent 

renormalization group equations, f3 but a simpler and quantitatively reasonable 

alternative is to follow the discussion of Ellis et al. 12 In which one compensates the 

change in b. at threshold by a change in A by demanding continuity in ns at the 

threshold. Assuming A = 500 MeV when nf = 4 then continuity when extrapolating 

through the b-quark threshold placed at p: 2mb = 10 GeV gives 

A = 385 MeV for 4mt2 > p2> 4m. 2 
i: (2.30) 



18 FERMILAB-Pub-80/97-THY 

Further, assuming a t-quark mass of order 100 CeV and extrapolating through the t- 

quark threshold gives 

A = 212 MeV for p*> 4mt2 , mt z: 100 GeV (2.31) 

to one loop accuracy. This is probably a good upper bound on A for our purposes. 

We’ve performed a similar extrapolation starting with A = 300 MeV for nf = 4 and 

assuming 200 GeV-” mt which gives A = 108 MeV for u2 > 4m 2 
t . Hence, we have: 

212 MeV > A > 108 MeV or -1.55 > In A > -2.22 (2.32) 

We will use the upper bound of 212 MeV in our subsequent analysis which will 

slightly overestimate m t’ 

For the remaining electroweak coupling constants we simply assume nf : 6, 

aEM z l/128 and sin’ 0,(MJ= .23 with Mw - 78 GeV. We are led to the ,, 

following approximate one loop results: 

a2=4<: jn xt + 51.05) 

3= 
6C159.95 - t) (2.33) 

These are seen to unify within a few percent at ~10 15 to 1016 GeV with 

~r~(lO~~) = 0.24, Q. ,(lO’? = .022, Q 1(10’5). .0125 and 8/3 sin2 13 w(1015)~ .97 

(slightly better at .5 x lOI CeV) all within one loop accuracy. 

We can now obtain real predictions for the mass of the t-quark as follows. 

The mass is a function of gt(Mx) given implicitly by 
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&It = 5 gtht, gt(Mx)) (2. 

where v is a constant - 246 GeV. We apply “Newton’s” method to obtain mt(gt(Mx)) 

iteratively by (A) choosing an initial value mt = m ,, (B) substituting into rhs of eq. 

(2.34) and deducing a new value m t $gt(m,, gt(hIx)) and (Cl Go to (0). The = 

method converges very quickly in practice requiring no more than 4 iterations with 

ml = 100 GeV. The self-consistency condition slightly accelerates the rate of 

approach to the fixed point and slightly reduces the fixed point values, as expected, 

from those at 100 GeV. We do this comparison since in Section III we do not worry 

about the self-consistency constraint and expect slight overestimates of about 3% 

if we choose tf = ln(100 GeV). 

Our final prediction for the intermediate fixed point value of mt including all 

SU(3) x SU(2) x U(1) effects to one-loop accuracy is tnt = 240 GeV. The inclusion 

of two-loop effects will probably increase this prediction. 

Is this a reasonable expectation? We will examine the limits placed upon 

mass splittings of members of electroweak isodoublets by measurements of the p- 

parameter in Section IV and find that this result is consistent with those bounds. 

However, to be near this result requires that mt(Mx) 2 100 GeV and thus there must 

be a large splitting already occurring in this generation at the grand unification 

mass scale. For example, a reasonable guess of mt - 15 GeV at the C.U.T. mass 

scale r: lOI CeV leads to only mt s 50 GeV at the threshold for t-quark 

production. This result reflects only the characteristic upward renormalization of 

mt by SLJ(3) x SU(2) x U(1) but does not involve the fixed point. Also, there are 

other constraints to be considered before we can accept such a large mt value. We 

return to these points in Section IV. 

,4) 
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Perhaps it is more promising to consider a fourth heavy generation in which 

the effects of the fixed point are very likely to be felt. To this possibility we turn 

presently. 

III. ADDITIONAL HEAVY QUARKS AND LEPTONS 

In the preceding section we argued that the t-quark mass, if determined by 

the RG fixed point, would have a value of -240 GeV. To reach this mass scale the 

t-quark must already have an effective mass 2 200 GeV at Mx and thus this result 

might be unreasonably large. If, then, the number of quark flavors is < 6 our 

discussion is irrelevant. However, the possibility exists that there may be 

additional flavor generations beyond the usual three and, if so, such quarks and 

leptons must be heavy. Hence, for extra generations it becomes extremely 

interesting to apply the RG fixed point model to obtain relatively insensitive mass 

predictions. 

Of course, there are problems in allowing additional flavors beyond nf = 6. In 

particular, the BEGN2 one loop analysis of constraints on the successful mb and m 
S 

predictions limits nf’ 8. Furthermore, Nanopoulos and Ross 5 find that the two 

loop corrections strengthen this constraint by I: 20%, whence nf 2 6. The latter 

result we believe is subject to the criticism that the authors ignore the effects of 

order g&f, etc., such as in Fig. (5) which involve the heavy quark Higgs-Yukawa 

5 couplings and which, for our purpose, are of order gc, i.e., gH S g,. Since gH 

effects can enter with opposite sign to gc effects we conclude that the Nanopoulos- 

Ross constraint is incomplete for sufficiently large gH. Of course, the gH effects 

in two loops could reinforce to strengthen the N-R constraint. It is of some 
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interest to carry out an evaluation of these corrections. 14 Nonetheless, it is 

possible that we may tolerate nf ( S and we will presently restrict ourselves to this 

limit. 

First we consider the case of two large Yukawa coupling constants of 

members of a single very heavy quark generation which we refer to as (T, 8) and we 

now ignore the corrections of order g, 2 and assume no Cabibbo mixing to other 

generations. For such a system we have: 

1Grr2 d3 
dt = gT 

i 
9 2 3 2 

q gg Tge +TgT -Qc 
2 \ ‘“Bj 

with 

KT = ;g*2+gg1* 

K0=;g22 5 ‘i2 g12 

(3.1) 

(3.2) 

It is not possible to solve eq. (3.1) analytically though we can easily discuss 

the fixed point behavior. Let us presently ignore ~~ and K B, the SU(2) x U(1) 

corrections, and following our discussion of the t-quark case, replace gc2 by a 

constant value of jjc*. 

Equations (3.1) possess three fixed points (in addition to the trivial 

gT = gg = 0 case) for gT 2 0 and gg 2 0: 



(I) gs = 0 

(ID 87. = 0 f 

(III) gg = gT = g # 0 ; 
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2 - S&3 = 0 or gT2 16 - 2 
= ygc 

(; gg2 - $2) = 0 or gg2 = $gc’ 

(f&2 - 8$ = 0 or g2 = 4- 2 . 3 g, (3.3) 

2d 
1671 $gb = 9g26gb + 3g2@, (3.4) 

Using g2 = 4/3 PC2 and diagonalizing we find: 

2d 16~ =dg, = 16g, - 26gl 

16~ 2d zig2 = Gc2s g2 (3.5) 

We see that cases (I) and (ID are equivalent to the t-quark case. The more 

interesting fixed point is case (III). 

We may examine the approach to the fixed points by considering small dis- 

placements and linearizing. For case (III) let gt : g + &gt, gb = g + 6gb and obtain: 

2d 
1671 zifgt = 9g26gt + 3g26gb 

with 6gl = 6g, + 6!?b’ 6@ = 6g, - 6&,v Hence, for decreasing t, the positivity of 

the eigenvalues implies that the fixed point is stable and 6gi + 0 as t + 0. (We’ve 

analyzed the general case of 2n quarks and prove that all fixed points for gi) 0 are 

stable.) 
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If we return to the case of a running coupling constant, g,(t) we can still 

locate the fixed points exactly by exploiting the symmetry gT ++ gB of eq. (3.1). In 

case (III) consider 

MT2 $f = g(6g2 - 8gc2) (3.6) 

with solution: 

g2 = q$J )8’bo {l+$$ { @)““-1 11 -I . (3.7) 

Repeating the discussion of Section (II) we are led to the intermediate fixed point 

behavior determined by an effective constant &*: 

E2 
b. g,(t) 

c =8 InR (3.8) 

Apart from the choice of nf = 8, this is the same effective constant determining 

the behavior in the t-quark case, which illustrates our discussion of the universality 

-2. of the effective constant gc m Section II. 

We now turn to a numerical integration of eq. (3.1) in which we retain the 

effects of K T and K B, which slightly destroy the gT t--f gg symmetry through the 

small U(1) effects. We assume the coupling constants of Section II and presently 

extrapolate through an assumed heavy fermion threshold at p = 200 GeV (we 

assume a full W(5) flavor generation here to maintain anomaly cancellation). The 

resulting extrapolated coupling constants become: 
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a2 - 3.142 
ct + S9.04J 

a 
1.178 

1 = Xl2 1.46 - tj 

t = lnp 

(3.9) 

which are okay to one-loop precision. In our present analysis, we do not worry 

about the self-consistent threshold condition of eq. (2.34) and carry our integration 

from Mx ” 1Ol5 GeV down to p : 200 GeV. 

Our results are presented in Fig. (6) as a scatter plot in which gT(M,) and 

gg(Mx) are members of a 5 x 5 array taking on integer values (n, m) for n 2 4, 

m 2 4. These points are integrated down to u = 200 GeV and are found to cluster 

about the fixed points and a “domain wall” as shown in Fig. (6). In fact, the 

approach to the fixed points is more impressive than we show as the domain wall 

may be rigorously regarded as a mapping of array points at m for u = Mx to their 

intermediate fixed point values for u ~200 GeV. The density of clustering is 

sufficiently large that not all of the final p z 200 GeV array points are resolvable 

on our diagram. We have also indicated the initial direction of “flow” of the points 

at M 
X’ 

Obviously, the fixed point of case (I) corresponds to the single heavy t-quark. 

From the present analysis we have: 

case I: mt z 255 
mb = 0 

case II: mt = 0 mb I: 250 

case III: m t 
3 222 m b - 217 (3.10) 
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the discrepancy in case I is due to our lack of use of the threshold self-consistency 

condition of eq. (2.38) in eq. (3.10) and the new a3, which is now larger than before 

with nf = 8 and increases the results. 

It is not hard to estimate the curve that constitutes the domain wall in Fig. 

(6), though we have not performed a rigorous analysis of this curve. Hence, we can 

roughly patch it together by considering the two cases gT > gg or gg > g,. (ignoring 

~~ and “B effects presently which restores the symmetry gg ++ gT). For example, 

for gT > gg we must find a curve that interpolates between case (I) and case (III) of 

eq. (3.1). Hence, we have 

gT = 
16-2 I 2 
T gc - 3 gB b ’ gB 

gg = i 
16-2 I 2 !+ 
T gc -7b ) % ’ g-r (3.11) 

as crude approximations to the two patches of the domain wall. A more rigorous 

analysis of this kind of behavior would be interesting. We note that the numerical 

clustering about the entire domain wall suggests that this is a more general feature 

of our intermediate fixed point behavior. If a fourth generation pair of heavy 

quarks is discovered not satisfying the fixed point conditions of eq. (3.10) it is of 

interest to check if the masses are near to the domain wall conditions of eq. (3.11). 

A more realistic possibility is that of a fourth SU(5) generation with a heavy 

lepton. Again, we make the simplifying assumption of ignoring Cabibbo mixing 

with lighter flavors and we also ignore any neutrino mass. Then, the three Higgs- 

Yukawa coupling constants gT, gB, gE satisfy: 

161~’ d argT = gT ;gT2+;gB2+gE2-8gc2-;g2-$g’2 
i ! 
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16x2-$ gE = gE(; gE2 + 3gT2 + 3gg 
2 9 2 15,z 

-qip --&-g (3.12) 

It is clear from the above equations that the leptonic mass will be much smaller 

than the quark mass since it does not receive contributions from gcL. 

We will integrate eq. (3.12) numerically assuming the SU(5) relation at Mx, 

gB = gE’ Without this assumption we would have a greater distribution of possible 

masses. With the SlJ5) constraint we can present the result as a two-dimensional 

scatter plot as before for a 5 :c 5 initial array of points (g,, gB) or (gT, gE) taking 

on integer values Cm, n) at Mx. 

In Fig. (7) we present the results of our numerical integration for (gT, gs) 

and (gT, gE). This is qualitatively similar to the two quark case discussed 

previously. We observe three fixed points in analogy with the three cases discussed 

above: 

case (I) gg = ,gE q 0 gT - 1.45 

case (II) gT = 0 gB = 1.36 gE -- .628 

case (III) gT - 1.25 gB ?: 1.23 gE - .342 . (3.13) 

Case (III) corresponds to masses mT? 219, mB ~215 and mE 2 60. Forthcoming 

accelerators may be able to observe such a lepton in the neighborhood of 60 GeV. 

If so, it would give significant encouragement to consider an effort to search for 

quark partners at the indicated energies. 
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These predictions would be different if one included a fifth heavy generation, 

or a heavy neutrino, or mixing angle effects. Our present discussion was aimed at 

getting a number characteristic of heavy lepton masses in the simplest set of 

assumptions. We have not yet carried out a study of the sensitivity of these results 

to various modifications as described above. 

IV. FURTHER CONSIDERATIONS 

In the present section we discuss various constraints appearing in the 

literature concerning fermion masses. Pendleton and Ross discuss several limits on 

the t-quark each of which become potentially more critical as our prediction 

increases the mass to IT240 GeV. The character of some of the limits changes 

slightly for our SU(5) heavy fourth generation, discussed in the preceding section. 

The constraints divide between “hard” experimental limits on radiative corrections 

to various processes and unitarity bounds and “soft” limits which appeal to the 

Higgs effective potential stability and perturbativity. We find that our predictions 

are consistent with all such bounds. 

Veltman considers limits on fermion masses in the standard model from 

radiative corrections to neutral current cross sections. I5 These emerge as essen- 

tially limits on the mass differences of members in a weak isodoublet, and we will 

naively apply them to quark doublets ignoring QCD corrections (presumably valid 

for sufficiently heavy quarks). In terms of the “P” parameter for a pair of massive 

fermions in a weak isodoublet with masses ml and m2 we have: 

p E %’ 
2 

52 2 cos2 0 

= I + ‘F 3 for quarks 
- 

8n2 

. (4.1) 
W 1 for leptons 
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Experimentally P is quite close to unity. Kim et al. 16. in giving a phenomenological 

discussion of existing neutral current data quote a resulting world average of 

p = 1.018 * .045, or about a maximum tolerable 5% departure from unity. 

Improved constraints arise by making specialized assumptions, e.g. for internal 

consistency our model has assumed no right-handed isodoublets and we should use a 

P parameter of 1.002 k .015, closer to a ” 2% departure from unity at most. 

Applying these limits: 

3 quarks 

1 lepton 

hence, for a single heavy t-quark with mb z 0 we have: 

420 GeV (5%) 
mt 5 

260 GeV (2%) 

5.5 x IO5 (5%) 

2.1 x lo5 (2%) 
(4.2) 

(4.3) 

For our fourth heavy W(5) generation near the nontrivial fixed point the above 

constraint applies to the difference mT - mB, ignoring the lepton contribution 

which is justified. Of course, improved accuracy in the determination of p may 

lead to improved limits on mass differences (with a required improvement in the 

analysis); however, our fourth generation heavy fermion prediction at the case (III) 

fixed point of Section III does not seem likely to violate this constraint. It is 

interesting that we might rule out case (I) and case (II) with slight improvements in 

p as well as ruling out the single fixed point t-quark. 

Chanowitz et al.” discuss other constraints on the fermion masses emerging 

from considerations of partial wave unitarity and perturbativity of heavy weak 

fermion scattering far above threshold. For N nearly degenerate isodoublets in the 
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standard model, quark masses must be less than 500/mGeV while leptons must be 

less than I TeV/& These limits are easily satisfied by the upper bounds we obtain 

from the renormaJization group evolution. All else being equal, for N > 4 we would 

begin to run afoul of this bound. 

For completeness, we recall the Nanopoulos-Ross constraint on nf from the 

successful W(5) relations mb/mr and m,/mT.5 As we’ve mentioned earlier, these 

limits of nf’ 6 were obtained by ignoring contributions of order gLgQCD2 which 

for gH s gQcDY as in our work, may be important. If such contributions enter with 

the opposite sign then there will be a critical value gHc such that for gH > gHc we 

can have additional heavy fermions, provided of course that this lower bound is 

consistent with the aforementioned upper bounds. If, however, the sign of these 

effects reinforces the Nanopoulos-Ross contributions, then we cannot have nf > 6 

and, moreover, we would have an upper bound on g,, e.g. -< gHc, hence an upper 

bound on mt, emerging from two loops. This is clearly an interesting calculation 14 

and should produce “interesting” information either way and could be a sore point 

for nf > 6, or else allow an interesting “window” for heavy quarks. 

To one loop accuracy we must ask how the relationships mb/mT and m,/m, 

are affected by heavy fermions or a heavy t-quark. The effect upon mb/m, has 

been discussed in ref. (3) in their case of mt 2135 CeV. Here we must include the 

effects of a mixing angle, 3, such that the charged weak current of t and b is 

cos Oiyu bL. The evolution of gb/g, is given by (dropping terms of order g*, g’*, 

16n2&ln(gb/gt) = -Gcos*3 gt2 - Qc2 (4.4) 
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Assuming gt is at its fixed point value over most of the evolution from M,, g, = it, 

which we take to a constant, we find upon integrating eq. (4.4): 

gb mb 
9, = CT = 

(usual SU(5) prediction) 

3cos*e - 2 

32n2 gt 
(4.5) 

Any lighter C-113) quark mixing to the t-quark with sin 0 yields a correction factor: 

(usual SU(5) prediction) 

3sin* t3 - 2 
32$ ” 

(4.6) 

With a typical value of it2 2 1.88 and taking 8 :: 0 we find the correction factor in 

eq. (4.5) to the mb/mT value is a factor of = (!.73). This is an upper bound and crtn 

be made closer to unity by choosing nonzero 0. 

For the case of a heavy fourth generation and a light t-quark in SU(5) there 

are no renormalization effects upon mb/m, and m,/m 
u 

in the absence of mixing, 

whence we obtain results as in eq. (4.6). This arises because the contributions of 

heavy quarks and leptons to the light fermions is the same for light quarks and 

leptons. Hence, to one loop order, the successful SU(5) predictions are not 

significantly modified while the two-loop effects are not completely known. 

One obtains “soft” bounds from consideration of the stability of the Higgs- 

effective potential in the presence of one-loop radiative corrections. I%19 For 

example, HungI’ discusses a stringent bound by demanding that the effective 

potential is bounded below as <O ) $1 O> = v tends to m and simultaneously requiring 

that the quartic coupling constant A be less than unity. For a single heavy t-quark 
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this amounts to mt -< 134 GeV, however there are several reasons to question the 

utility of this result. Similarly, Politzer and Wolfram” argue mt 2 300 GeV with a 

certain assumption about perturbativity. 

As mentioned by Hung himself, one may consider X to be much larger than 

unity and still retain perturbativity. A is bounded by p16n by unitarity in which 

case the above quoted bound is significantly relaxed to (Cmf4)’ 2 873 GeV. This 

latter constraint is very insensitive to the number of fermions and, for an SU(5) 

generation with mT ” mB = mE 2 m, yields m -< 536 GeV (including quark color 

factors) easily satisfied by our predictions and upper bounds. 

Secondly, the unboundedness of the Higgs effective potential is only realized 

for v becoming so large that the calculation to one loop order is no longer self- 

consistent. For example, let us imagine that the quartic coupling constant of the 

Higgs potential is due entirely to the radiative corrections coming from a single 

heavy fermion with Higgs-Yukawa coupling gH. From the formulae of Hung 

‘int 4 4 o2 
+q-- Q + K’$ In - 

<@>2 

where 

K = {$-4gH2}-& 

(4.7)= 

‘int =A -1OOK (4.9) 

and we determine <QI> following Hung’s renormalization conditions (eqs. (5, 6 and 

7)): 
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<$>Z = 

If we consider h = 0 we find: 

<I$> 
2 3u2 = __ 

176 gH2 

(4.10) 

(4.11) 

dnd 

2 

t 
. (4.12) 

When does the potential become unbounded below? This requires that the 

second term of eq. (4.12) becomes negative, or 

:v* 

176 g,, 
2 ew (4.13) 

Regardless of the numerical result, eq. (4.3) indicates that perturbation theory is 

breaking down as the potential turns over, or upon substituting back into eq. (4.12) 

V($) fl Li4/g,*, a nonperturbative result. Presumably, including still higher order 

corrections will not remedy this situation. Hence, we do not believe that 

constraints of this kind are valid even in principle. This differs from ref. (18) in 

which one can conclude that the effective potential is unstable within the 

perturbative domain but that the minimum is located beyond the perturbative 

domain. 

A final minor objection to Higgs-potential constraints is the fact that the 

gauge hierarchy problem of W(5) is not understood and the interplay between that 

and our present considerations is unknown. 
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Beyond these considerations, which our model seems to survive, are the 

assumptions we’ve employed and the expectation of their validity. In our SU(9 

analysis we’ve assumed zero mixing angle effects and our predictions are subject to 

corrections from mixing angles significantly larger than a few degrees. About this 

we can make few comments since the Kobayashi-Maskawa angles are known so 

POOrlY beyond 8 Cabibbo (most constraints are consistent with sine i - I/LO). ” The 

fixed point value of mt, if nf = 3, is insensitive to mixing angle effects. 

In all our discussion we’ve assumed a desert between M w and MZ to Mx, in 

which only the SU(2) x U(I) x SU(3) interactions play a significant role and we’ve 

further assumed a point-like isodoublet Higgs boson over the full range of desert 

mass scales. Indeed, our starting point at eq. (2.3) is invalidated if the Higgs boson 

is not point-like above some mass scale M’ in the desert. Since M’ may well be a 

technicolor mass scale sl to 10 TeV, our results are evidently lost if the Higgs 

isodoublet is a composite technipion. Of course, so too are the W(5) scenarios, 

such as mb/m . 
T 

Hence, the RC fixed point model is intrinsically a CUT theory 

model with a standard GUT unification scale s Mx and a standard desert extending 

up to that scale. 

Finally, we comment that if GUT’s are real, our results are at least very 

stringent bounds upon the masses of fermions assuming only perturbativity at Mx. 

This point has already been made by Cabibbo et al. 2’ Indeed, these bounds excel 

all of the others discussed in this section, provided GUT’s are real. 

It is compelling, therefore, that the quark mass scale 2 240 GeV seems to 

play a central role in the renormalization group equations of SU(2) x U(1) x W(3) in 

the GUT-desert picture. It might seem appropriate to consider seriously the 

related questions such as the phenomenology and experimental feasibility of 
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searches in this energy neighborhood in future machines, as well as improvements 

in the accuracy of the p-parameter and two-loop analysis including g;gQCD ’ and 

5 gH effects in mb/m, . 14 
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FIGURE CAPTIONS 

gt (100 CeV) against gt(Mx) including only effects of QCD 

indicating Pendleton-Ross fixed point and result assuming 

slowly varying g&D using average, iz, between t = In CM,) 

and t = In (100). 

Diagrams contributing to RG equations; G C SU(31, A C SU(Z), 

B C U(l), and dashed line is Higgs boson. Figs. (2b) and (2~) 

are also extrapolation contributions. 

g,(u) against gt(Mx) for u = 100 GeV, 10 GeV and 1 CeV. 

Arrow denotes location of PR fixed point and (+) denotes 

location of approximate intermediate fixed point using for 

-2 
gQCD the average as in eq. (2.17). 

-. 
Evolution of g,(u) for several initial choices of go 5 gt(M,). 

We plot also the PR fixed point condition of eq. (2.13) and the 

intermediate fixed point of eq. (2.22). Also, we include the 

self-consistent threshold condition of eq. (2.23). 

Sample higher order corrections to the analysis of ref. (5) 

important when gH IT gQCD. 

Scatter plot result of numerical integration of eq. (3.1) with 

5 x 5 initial array. 

Scatter plots resulting from numerical integration of eq. 

(3.12) relevant to an SU(5) fourth generation with 5 x 5 initial 

array as in Fig. 6. 
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